Chapter 8: How Cells Release Stored Energy

ATP Is Universal Energy Source

- Photosynthesizers get energy from the sun
- Animals get energy second- or third-hand from plants or other organisms
- Regardless, the energy is converted to the chemical bond energy of ATP

Making ATP

- Plants make ATP during photosynthesis
- Cells of all organisms make ATP by breaking down carbohydrates, fats, and protein

Main Types of Energy-Releasing Pathways

Anaerobic pathways

- Evolved first
- Don't require oxygen
- Start with glycolysis in cytoplasm
- Completed in cytoplasm

Aerobic pathways

- Evolved later
- Require oxygen
- Start with glycolysis in cytoplasm
- Completed in mitochondria

Main Types of Energy-Releasing Pathways

© 2006 Thomson Higher Education

Anaerobic Energy-Releasing Pathways Aerobic Respiration

Summary Equation for Aerobic Respiration

$$C_6H_{12}O_6 + 6O_2$$
 $6CO_2 + 6H_2O$ glucose oxygen carbon dioxide water

Glucose

• A simple sugar $(C_6H_{12}O_6)$

 Atoms held together by covalent bonds

Glycolysis Occurs in Two Stages

Energy-requiring steps

ATP energy activates glucose and its six-carbon derivatives

Energy-releasing steps

- The products of the first part are split into three-carbon pyruvate molecules
- ATP and NADH form

Glycolysis

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

Energy-Requiring Steps of Glycolysis2 ATP invested

Figure 8-4(2)

Page 127

Figure 8-4 Page 127

Glycolysis: Net Energy Yield

Energy requiring steps:2 ATP invested

Energy releasing steps:

2 NADH formed

4 ATP formed

Net yield is 2 ATP and 2 NADH

- Preparatory reactions
 - Pyruvate is oxidized into two-carbon acetyl units and carbon dioxide
 - NAD⁺ is reduced

- Krebs cycle
 - The acetyl units are oxidized to carbon dioxide
 - NAD⁺ and FAD are reduced

Fig. 8-5a, p.128

© 2006 Brooks/Cole - Thomson

Fig. 8-6a, p.128

© 2006 Brooks/Cole - Thomson Fig. 8-6b, p.128

Preparatory Reactions

Preparatory Reactions

Fig. 8-7b, p.129

Krebs Cycle

Figure 8-6

Page 129

The Krebs Cycle

Overall Reactants

- Acetyl-CoA
- 3 NAD+
- FAD
- ADP and P_i

Overall Products

- Coenzyme A
- 2 CO₂
- 3 NADH
- FADH₂
- ATP

Results of the Second Stage

- All of the carbon molecules in pyruvate end up in carbon dioxide
- Coenzymes are reduced (they pick up electrons and hydrogen)
- One molecule of ATP forms
- Four-carbon oxaloacetate regenerates

Electron Transfer Phosphorylation

- Occurs in the mitochondria
- Coenzymes deliver electrons to electron transfer chains
- Electron transfer sets up H⁺ ion gradients
- Flow of H⁺ down gradients powers ATP formation

Phosphorylation

@ 2006 Thomson Higher Education

Fig. 8-9, p.131

Creating an H⁺ Gradient

Making ATP: Chemiosmotic Model

Importance of Oxygen

 Electron transport phosphorylation requires the presence of oxygen

 Oxygen withdraws spent electrons from the electron transfer chain, then combines with H⁺ to form water

Summary of Energy Harvest (per molecule of glucose)

- Glycolysis
 - 2 ATP formed by substrate-level phosphorylation
- Krebs cycle and preparatory reactions
 - 2 ATP formed by substrate-level phosphorylation
- Electron transport phosphorylation
 - 32 ATP formed

Efficiency of Aerobic Respiration

- 686 kcal of energy are released
- 7.5 kcal are conserved in each ATP
- When 36 ATP form, 270 kcal (36 X 7.5) are captured in ATP
- Efficiency is 270 / 686 X 100 = 39 percent
- Most energy is lost as heat

Anaerobic Pathways

- Do not use oxygen
- Produce less ATP than aerobic pathways
- Two types
 - Fermentation pathways
 - Anaerobic electron transport

Fermentation Pathways

- Begin with glycolysis
- Do not break glucose down completely to carbon dioxide and water
- Yield only the 2 ATP from glycolysis
- Steps that follow glycolysis serve only to regenerate
 NAD⁺

Alcoholic Fermentation

Fig. 8-10d, p.132

Alcoholic Fermentation

Fig. 8-10a, p.132

Alcoholic Fermentation

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson Fig. 8-10c, p.132

Fig. 8-11, p.133

Lactate Fermentation

Anaerobic Electron Transport

- Carried out by certain bacteria
- Electron transfer chain is in bacterial plasma membrane
- Final electron acceptor is compound from environment (such as nitrate), not oxygen
- ATP yield is low

© 2006 Brooks/Cole - Thomson

Alternative Energy Sources

@ 2006 Brooks/Cole - Thomson

Alternative Energy Sources

Fig. 8-13b, p.135

Evolution of Metabolic Pathways

- When life originated, atmosphere had little oxygen
- Earliest organisms used anaerobic pathways
- Later, noncyclic pathway of photosynthesis increased atmospheric oxygen
- Cells arose that used oxygen as final acceptor in electron transport

Processes Are Linked

© 2006 Brooks/Cole - Thomson